3 research outputs found

    Multi-objective sustainable location-districting for the collection of municipal solid waste : two case studies

    Get PDF
    This paper presents a multi-objective location-districting optimization model for sustainable collection of municipal solid waste, motivated by strategic waste management decisions in Iran. The model aims to design an efficient system for providing municipal services by integrating the decisions regarding urban area districting and the location of waste collection centers. Three objectives are minimized, given as 1) the cost of establishing collection centers and collecting waste, 2) a measure of destructive environmental consequences, and 3) a measure of social dissatisfaction. Constraints are formulated to enforce an exclusive assignment of urban areas to districts and that the created districts are contiguous. In addition, constraints make sure that districts are compact and that they are balanced in terms of the amount of waste collected. A multi-objective local search heuristic using the farthest-candidate method is implemented to solve medium and large-scale numerical instances, while small instances can be solved directly by commercial software. A set of randomly generated test instances is used to test the effectiveness of the heuristic. The model and the heuristic are then applied to two case studies from Iran. The obtained results indicate that waste collection costs can be reduced by an estimated 20-30 %, while significantly improving the performance with respect to environmental and social criteria. Thus, the provided approach can provide important decision support for making strategic choices in municipal solid waste management. Keywords: multi-objective optimization, local search, best-worst methodpublishedVersio

    A dynamic location-arc routing optimization model for electric waste collection vehicles

    No full text
    Waste collection management plays a crucial role in controlling pandemic outbreaks. Electric waste collection systems and vehicles can improve the efficiency and effectiveness of sanitary processes in municipalities worldwide. The waste collection routing optimization involves designing routes to serve all customers with the least number of vehicles, total traveling distance, and time considering the vehicle capacity. This paper proposes a dynamic location-arc routing optimization model for electric waste collection vehicles. The proposed model suggests an optimal routing plan for the waste collection vehicles and determines the optimal locations of the charging stations, dynamic charging arcs, and waste collection centers. A genetic algorithm and grey wolf optimizer are used to solve the large-sized random generated NP-hard location-arc routing problems. We present a case study for the city of Edmonton in Canada and show the grey wolf optimizer outperforms the genetic algorithm. We further demonstrate the total number of waste collection centers, charging stations, and arcs for dynamic charging needed to ensure a minimum required service for electric vehicles throughout Edmonton\u27s entire waste collection system
    corecore